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Probabilistic Modeling
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Previous Lecture

PO Topics Discussion
Lecture 10:
Probabilistic approach to NLP

Logical vs. plausible reasoning
Probabilistic approach to NLP
» logical vs. plausible reasoning
» plausible reasoning approaches

Probability theory review
@ Bayesian inference: generative models
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PO Topics Discussion (2)

@ Continued discussion of PO submissions
@ Project discussed: P-02
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Probabilistic Modeling

@ How do we create and use a probabilistic model?
@ Model elements:
» Random variables
» Model configuration (Random configuration)
» Variable dependencies
» Model parameters

e Computational tasks
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Random Variables

@ Random variable V', defining an event as V' = x for
some value = from a domain of values D: i.e., z € D

@ VV = x is usually not a basic event due to having
more variables

@ An event with two random variables:
Vi=a1, Vo = a9
@ Multiple random variables: V = (V, V5, ..., V})
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Model Configuration (Random Configuration)

e Full Configuration: If a model has n random
variables, then a Full Model Configuration is an
assignment of all the variables:

Vi=x,Voa=29,...,V, =2,

e Partial configuration: only some variables are
assigned, e.g.:

Vi=z,Vo=a9,.... Vi =21 (k<n)
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Probabilistic Modeling in NLP

Probabilistic Modeling in NLP is a general
framework for modeling NLP problems using
random variables, random configurations, and an
effective ways to reason about probabilities of
these configurations.
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Variable Independence and Dependence

@ Random variables V| and V5 are independent if
P(Vi=x1, Vo=x9) = P(Vi=121)P(Vo=15) for all
L1, L2

@ or expressed in a different way:
P(%:SIHH/Q:%'Q) = P(‘/lle) for all xT1,T2,XT3.

@ Random variables V; and V5 are conditionally
independent given V3 if, for all x1, x9, x3:
P(Vlle,%:%ﬂvza:%) =
P(Vi=z1|V3=23)P(Va=12|V3=13)

@ or
P(Vi=x|Vo=19, Va=13) = P(Vi=21|V3=13)
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Computational Tasks in Probabilistic Modeling

1. Evaluation: compute probability of a complete
configuration

2. Simulation: generate random configurations

3. Inference: has the following sub-tasks:

3.a Marginalization: computing probability of
a partial configuration,

3.b Conditioning: computing conditional
probability of a completion given an
observation,

3.c Completion: finding the most probable
completion, given an observation

4. Learning: learning parameters of a model from data.
VES



lllustrative Example: Spam Detection

@ the problem of spam detection

@ a probabilistic model for spam detection; random variables:

Caps = 'Y’ if the message subject line does not contain
lowercase letter, ‘N’ otherwise,

Free = "Y' if the word ‘free’ appears in the message
subject line (letter case is ignored), ‘N’ otherwise,
and

Spam = 'Y’ if the message is spam, and ‘N’ otherwise.

@ one random configuration represents one e-mail message
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Random Sample

@ Data based on sample of 100 email messages

Free | Caps | Spam | Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49
Total: 100

What are examples of computational tasks in this example?
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Joint Distribution Model

@ Probability of each complete configuration is
specified; i.e., the joint probability distribution:

P(‘/l =T1,y..uy Vn:ZIIn)

@ If each variable can have m possible values, the
model has m" parameters

@ The model is a large lookup table: For each full
configuration x = (Vy ==y, ..., V,,=x,), a parameter
px Is specified such that

0<px<1and przl
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Example: Spam Detection (Joint Distribution Model)

MLE — Maximum Likelihood Estimation of probabilities:

Free

Caps | Spam | Number of messages | p

Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 5 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.00
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Computational Tasks in Joint Distribution Model:
1. Evaluation

@ Evaluate the probability of a complete configuration
X = (T1, .0y Tp).

@ Use a table lookup:
P(Vi =1y ey Vn :xn) = P(z1,22,...,x0)

@ For example:

P(Free =Y, Caps = N, Spam = N) = 0.00

@ This example illustrates the sparse data problem

@ Inferred that the probability is zero since the configuration was
not seen before.
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2. Simulation (Joint Distribution Model)

o & = E DA
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2. Simulation (Joint Distribution Model)

@ Simulation is performed by randomly selecting a configuration
according to the probability distribution in the table

@ Known as the “roulette wheel” method

1. Divide the interval [0, 1] into subintervals of the lengths: p;, ps,
ooy bt Ty = [0,p1), Iz = [p1,p1 + p2),
Iy = [p1+p2,p1+p2+p3), . Apn = [Pr+pat. .+ Ppn1, 1)

2. Generate a random number r from the interval [0, 1)

3. r will fall exactly into one of the above intervals, e.g.:
L=pi+...+pic1,p1+ ...+ pic1 +pi)

4. Generate the configuration number i from the table

5. Repeat steps 2—4 for as many times as the number of
configurations we need to generate
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Joint Distribution Model: 3. Inference

3.a Marginalization

@ Compute the probability of an incomplete configuration
P(Vi=xzy,...,Vy=x}), where k < n:

P(Vi:l’l,.. Vk:l‘k)
- Z ZP% xl""7Vk:xk"/k+1:yk+17"'7Vn:yn)

Yk+1

= Z Zp(xlr Tk Yk+15-- 7yn)

Yr+1

@ Implementation: iterate through the lookup table and
accumulate probabilities for matching configurations
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Joint Distribution Model: 3.b Conditioning

@ Compute a conditional probability of assignments of some
variables given the assignments of other variables; for example,

P({/l =T,..., Vk:xk|Vk+1=y1, ceey ‘/k+l:yl)
P(‘/lleu c.. ,Vk:xku Vk—i-l:yl? sy ‘/k"rl:yl)
P(VkH:yl, sy Vk—l—l:yl)

@ This task can be reduced to two marginalization tasks

@ If the configuration in the numerator happens to be a full
configuration, that the task is even easier and reduces to one
evaluation and one marginalization.
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Joint Distribution Model: 3.c Completion

@ Find the most probable completion (5, .-, ¥;) given a partial
configuration (21, ..., k).

Ypstr - Yp = argmax P(Vipi=yrq1, ..., Va=yn|Vi=21,..., Vi =14)
Ye+15--9Yn

P(Vl =1, e Vk:xk; Vk:+1 :yk+17 ceey Vn:yn)

= arg max
Ykt 15 Yn P(Vi=zy,...,Vi=m3)

= argmax PVi=z1,...,Vi=2k, Vit1 =Yk+1s -, Va=UYn)
Yk+1s--Yn

= arg MmMaX P(zy, .. ap,yk41,-Yn)
Yk415erUn

@ Implementation: search through the model table, and from all
configurations that satisfy assignments in the partial configuration, chose
the one with maximal probability.
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Joint Distribution Model: 4. Learning

@ Estimate the parameters in the model based on given data
@ Use Maximum Likelihood Estimation (MLE)

@ Count all full configurations, divide the count by the total number of
configurations, and fill the table:

H#Vi=ay,. . V=1,)
p(ﬂil;-u:wn) - #(*, ey *)

@ With a large number of variables the data size easily becomes insufficient
and we get many zero probabilities — sparse data problem
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Drawbacks of Joint Distribution Model

@ memory cost to store table,
@ running-time cost to do summations, and
@ the sparse data problem in learning (i.e., training).

Other probability models are found by specifying
specialized joint distributions, which satisfy certain
independence assumptions.

The goal is to impose structure on joint distribution
P(Vi=x1,....,V,=x,). One key tool for imposing
structure is variable independence.
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Fully Independent Model

e Assumption: all variables are independent
PWVi=xzy,..,Vi=x,) =P(Vi=x1)---P(V,=x,).

e Efficient model with a small number of parameters:
O(nm)

e Drawback: usually a too strong assumption

e Fully independent model for the Spam example:

P(Free, Caps, Spam) = P(Free) - P(Caps) - P(Spam)
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Fully Independent Model: [4.] Learning

Spam example:
Free | P(Free)

Y W =0.26 and similarly,
N 20—&-3;)—3-#49 —0.74

Caps | P(Caps)

Spam | P(Spam)
Y | B =044 and Y | 2EEEHEZ — (47
N 5+Oi|6%+49 —=0.56 N 1+01—|(-)?6+49 —=0.53

Hence, in this model any message is a spam with probability 0.47, no
matter what the values of Caps and Free are.
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Evaluation Example

As an example of evaluation, the probability of configuration
(Caps =Y, Free = N, Spam = N) in the fully independent model is:

P(Free =Y, Caps = N, Spam = N) =
= P(Free=Y)-P(Caps= N)-P(Spam= N) =
= 0.26-0.56 - 0.53
= 0.077168 =~ 0.08
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Fully Independent Model: 2. Simulation

@ For j =1,...,n, independently draw x; according to
P(V;=x;) using “roulette wheel” for one variable

e Conjoin (z1,...,%,) to form a complete configuration.
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3. Inference in Fully Independent Model

3.a Marginalization in Fully Independent Model
The probability of a partial configuration
(Vlle, ceey Vk:xk) IS

PVi=wzy,...,Vi=zp) = P(Vi=x1) - ...« P(Viy=ay)

This formula can be obvious, but it can also be derived.
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Derivation of Marginalization Formula

P(‘/llea"'avk:wk Z ZP ‘/1 1:13"aVk:mk7Vk+1:yk+1a"'?Vn:yn

Ye+1
= > - ZPvl 21) - P(Ve=21)P(Viy1 =yis1) - - P(Vu=1n)
Ye+1
= P(Vi=z1) - P(Vi=ax) | D P(Vig1=vss1) | D -~ [ZP 1
| Yk+1 Yk+2

= P(Vi=z1)--P(Vi=ax) | > P(Vir1=0rs1)

Yk+1

: Z P(Vn :yn)‘|

= P(Wi=z) - -P(Vie=xy)
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A Note on Sum-Product Computation

D> flagt) = Y fla) (Z g(b))

(because f(a) is a constant for summation over b)

(; g(b)> : (; f(a)>

(because Z g(b) is a constant for sumation over a)
b

- (o) (o)
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Similar Note for Max-Product Computation

If we assume that f(a) > 0 and g(b) > 0, the same rule applies for max, and
maxy:

max max f(a)g(b) =

— mx f(0) ()

(because f(a) is a constant for maximization over b)

(mpxo(®)) - (e (@)

(because max g(b) is a constant for maximization over a)
b

(o 1(@)) - (macao))
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3.b Conditioning in Fully Independent Model

P(Vit1=Vk+1s s Vo =yn|Vi=21, ..., Vi =14)
P(‘/l =Ty ey Vk =Tk, Vk+1 =Yk+1y -5 Vn:yn)
P(‘/l =T1y.- .y Vk :.’L'k)
P(Vi=z1) - P(Vi=2)P (Vi1 =yr41) - P(Va=yn)
P(Vl le) e P(szxk)
= P(Vk+1 :yk-l—l) T P<Vn :yn)
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3.c Completion in Fully Independent Model

Ypgrr Yy = argmax P(Vig1=ypy1, ., Vo=yn|Vi=21, ..., Vi =1y)
Yk+1s5--3Yn
= arg max P(Viep1=yp41) - P(Va=yn)
Yk+1s--Yn

= |arg maxP (Vi1 :yk+1)] e [arg max P(V,, =yn)

Yk+1 Yn

[m] = =
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Joint Distribution Model vs. Fully Independent
Model

@ Fully Independent Model addresses some issues of
the Joint Distribution Model

o Efficient and small number of parameters
@ However: too strong assumption, no structure

@ Too trivial to be usable
@ Better method: Structured probability models

» compromise between no dependence and too much
dependence
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Naive Bayes Classification Model

Fully independent model is not useful in classification:
class variable should be dependent on other variables

@ A solution: make class variable dependent, but
everything else independent

Let V] be the class variable
Vo, Vs, ..., V, are input variables (features)

@ Classification can be expressed as

arg maXp(‘/l — $1|‘/2 — IQ;‘/E’) = ZU?,,---;Vn = xn)
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Naive Bayes Independence Assumption

@ After applying Bayes theorem we obtain:

P(Vo,Vs,... . Va[Vh) - P(V1)

@ We assume that V5, V3, ..., V, are conditionally independent
given V1: Naive Bayes Independence Assumption (1):

@ or as an equivalent formula for Naive Bayes Independence
Assumption (2):

P(Vi,Va,..., Va) = P(VA) - P(Val Vi) - P(Va|VA) - ... - P(Vi|VA)
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Graphical Representation: Naive Bayes Model

Assumption:

P(Vi, Vs, Vi,.... Vi) = P(VA) - P(ValVA) - P(|WA) - ... - P(Vi[VA)
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