
CSCI 2132
Software Development

Lecture 12:

C compared to Java: Expressions and Statements

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

1-Oct-2018 (12) CSCI 2132 1

Previous Lecture

• Processes and programs
– threads
– process Control Block (PCB)

• Process creation
– fork and exec system calls

• Job control and process control
– foreground and background processes
– commands for managing jobs and processes

1-Oct-2018 (12) CSCI 2132 2

C Operators, Expressions, and Statements

• We assume that you know Java well
• Focus on differences between C and java
• Arithmetic Operators
• Similar; e.g,, +, -, *, /, %, ++, --, =, += . . .
• % cannot be applied on floating-point numbers
• Integer operator / has an implementation-defined

behaviour for negative numbers in earlier standards
• C99 defines that division is rounded toward 0
• Concept of implementation-defined behaviour

1-Oct-2018 (12) CSCI 2132 3

Expression Evaluation

• In Java: from left to right
• In C: order of expression evaluation is unspecified
behaviour
• Example:

a = 5;
c = (b = a + 2) - (a = 1);

1-Oct-2018 (12) CSCI 2132 4

Logical Expressions

• Similar to Java; e.g.,
– comparison operators: <, >, <=, >=, ==, !=
– logic operators: !, &&, ||

• Difference:
– Java has boolean primitive type,
– C uses ‘int’ as a boolean type for true and false
– a type bool similar to Java introduced in C99 standard
– int is still in use, since bool is not mandatory

• Use of int: 0 is false and 1 is true
• More generally: 0 is false, anything else is true (in if,
while, . . .)

1-Oct-2018 (12) CSCI 2132 5

Boolean Interpretation of int

• Provides convenient short notation, as in:

int f=1, i=n;
while (--i) f *= i+1;

• But also traps such as:

if (a < i < b) { ... }

• and

if (x = a + b) { ... }

1-Oct-2018 (12) CSCI 2132 6

Short-Circuit Evaluation

• done for && and ||, as in Java
• Consider example:

if (a != 0 && b/a > 2) { ... }

1-Oct-2018 (12) CSCI 2132 7

Control Structures

• Similar to Java: if, switch, while, do-while, for
• Breaking a loop or switch: break, but no label
• Continuing a loop: continue
• Returning from a function: return
• In C but not allowed in Java: goto label

– label: used with a statement
– local jump, within the same function

• To exit a program: exit defined in stdlib.h
– A return from the function main exists the program

as well

1-Oct-2018 (12) CSCI 2132 8

Variable Declaration in ‘for’ Loop

• Allowed in Java; e.g., for(int i; i<10; i++) ...

• Not allowed in C prior to C99
• Allowed in C99 and later

The Comma Operator
• Used implicitly in ‘for’ loops; e.g.,
for(i=0, j=0; i<10; i++)...

• However, it has explicit meaning
• (expr1, expr2, . . .) — evaluate expr1, expr2, and so on
• Example: x = (a=3, b=4, c=5);

1-Oct-2018 (12) CSCI 2132 9

Goto Statement

• Not in Java, although it is a reserved word
• Unconditional jump to any other statement in the same

function
• Syntax to define a label

identifier: statement
Example: loop: i++;

• Syntax of the goto statement:
goto identifier
Example: goto loop;

1-Oct-2018 (12) CSCI 2132 10

Example with goto

#include <stdio.h>

int main() {
int i = 1;

loop: printf("%d\n", i);

i++;
if (i <= 10)
goto loop;

return 0;
}

1-Oct-2018 (12) CSCI 2132 11

Some notes about goto

• Used to be popular (e.g., Basic, Fortran)
• Excessive use leads to “spaghetti” code

– hard to understand and maintain
• Discouraged in structured programming
• Excluded from Java (although kept as a reserved word)
• In C: Jumps within a function

1-Oct-2018 (12) CSCI 2132 12

Typical Uses for goto

• Machine-generated code
• Jumping out of several nested loops and switch-statements; e.g.:

while (...) {
switch(...) {

...
goto loop_done;

}
...

}

loop_done: ...

1-Oct-2018 (12) CSCI 2132 13

null Statement

• Simply a semicolon: ;
• Example:

for (d = 2; d < n && n % d != 0; d++)
;

if (d < n)
printf("%d is not a prime number\n");

• More efficient loop:

for (d = 2; d*d <= n && n % d != 0; d++)
;

• The same effect of empty loop body:

for (d = 2; d*d <= n && n % d != 0; d++)
{ }

1-Oct-2018 (12) CSCI 2132 14

C Basic Types: Integer Types

• type int with optional preceding specifiers
• First specifier: signed and unsigned
• unsigned is always non-negative
• signed uses first bit to indicate negative number
• Java does not have specifier signed/unsigned
• Second specifier: short and long
• Determines memory size

1-Oct-2018 (12) CSCI 2132 15

Combinations of Integer Specifiers

• Order not important; e.g., all of these are valid:

short int
unsigned short int
int
unsigned int
long int
unsigned long int
long unsigned int
signed long int

• We can omit ‘int’; e.g.:
long i = 1L; short s = 0;

1-Oct-2018 (12) CSCI 2132 16

Range of integers

• Typically an ‘int’ corresponds to one machine word
• Example: size of int = 2 bytes (on an old CPU)
• unsigned int range:

from 0 to 216 − 1 = 65, 535

• signed int range:
from −215 = −32, 768 to 215 − 1 = 32, 767

• Explanation:
– Numbers between 10000000 00000000 and

11111111 11111111 are used for negative numbers
• 2’s complement representation

1-Oct-2018 (12) CSCI 2132 17

