
CSCI 2132
Software Development

Lecture 1:

Course Introduction

Instructor: Vlado Keselj

Faculty of Computer Science

Dalhousie University

5-Sep-2018 (1) CSCI 2132 1



Course Description: What is this course
about?

• Introduction to intermediate programming and software
development techniques

• Command-Line Interface, Procedural Language (C), a
UNIX-style operating system (Linux)

• Tools and techniques: source code management and
version control, build tools (make), software testing,
debugging, scripting, and other techniques useful for
software development

5-Sep-2018 (1) CSCI 2132 2



CSCI 2132: Software Development

Time: Mondays, Wednesdays, and Fridays 12:35–13:25

Location: Chemistry 125

Labs: B01 Thu 08:35–09:55, Goldberg CS 143 (TLab 2)
B02 Thu 08:35–09:55, Goldberg CS 133 (TLab 1)
B03 Thu 08:35–09:55, LSC-Common-Area 220
B04 Thu 10:05–11:25, Goldberg CS 143 (TLab 2)
B05 Thu 08:35–09:55, Goldberg CS 133 (TLab 1)
B06 Thu 08:35–09:55, Goldberg CS 143 (TLab 2)

Instructor: Vlado Keselj (Vlado Kešelj, pron.≈ Vlado Keshel)
office: CS 432, email: vlado@dnlp.ca,
phone 902-494-2893

URL: http://web.cs.dal.ca/ vlado/csci2132

E-mail list: csci2132@lists.dnlp.ca

5-Sep-2018 (1) CSCI 2132 3



Some Important Dates

• More information on the course calendar page
• Term starts: Tue Sep 4, 2018
• Last day to add classes: Tue Sep 18, 2018
• Midterm Exam I: Thu Sep 27, 2018
• Last day to drop class without “W”: Mon Oct 1, 2018
• No class, Thanksgiving: Mon Oct 8, 2018
• Last day to drop class with “W”: Tue Oct 30, 2018
• Midterm Exam II: Thu Nov 8, 2018
• No class, in lieu of Remembrance Day: Mon Nov 12, 2018
• Fall Study Break (no classes): Nov 12–16, 2018
• Term ends: Tue Dec 4, 2017 (Monday classes held)
• Final Exam: TBA, it will be a 3h exam in the period of Dec 6 to 16,

2018

5-Sep-2018 (1) CSCI 2132 4



Evaluation Criteria

• Assignments (30%)
– Tentatively 7-10 assignments, best n− 1 used for grading if n > 6

– Late assignments will not be accepted.
– Assignments will be submitted electronically; exceptions possible
– Will likely include two practicums during lab time with requirement

to solve at least one problem
• Midterm Exams (20%)

– Two midterms, during class time
• Final Exam (50%)

– Scheduled by the university.
– Will cover all material in the course.
– Midterms may be ignored if better mark is obtained by ignoring

them and counting 70% for the Final Exam

5-Sep-2018 (1) CSCI 2132 5



Lectures

• Slides and notes will be available online
• Longer examples (programs)

– Code will be available electronically: few comments,
with “blank” part

– Will do the fill-in-the blank questions in class, and it is
advised that you take notes of the answers

– Notes about design and some comments will be given
– After class, you are advised to fill in the blanks and add

comments, run them on bluenose, and print them to
study them

5-Sep-2018 (1) CSCI 2132 6



Midterm and Final Exam
Requirements

• Photo ID is required.
• Closed book. One single prepared sheet with

up to two pages allowed (“cheat sheet”).
• No calculators, cell phones, notes, dictionaries,

and other electronic of paper aids allowed.

5-Sep-2018 (1) CSCI 2132 7



Marking Schema of Programming Assignments

• Programming assignments will be evaluated for
– Correctness
– Design
– Documentation

• Correctness
– This will be evaluated using an automatic testing program
– Similar to client evaluation of software product
– Your program must compile and pass at least the test case given

in the assignment
• Disclaimer: This does NOT apply to coding questions in exams

5-Sep-2018 (1) CSCI 2132 8



What to do when your Program is Incorrect?

• Do:
– Debug!
– Try to make your program run for at least some of the

simple cases if you run out of time
– You will learn a lot from this debugging process
– This is how your software products will be evaluated by

your clients in the future
• Do not:

– Keep writing your program without testing it
– These are not written assignments!
– You will learn little by simply keep writing code

5-Sep-2018 (1) CSCI 2132 9



Lab Work

• Labs are mandatory
• Course materials that are more suitable for lab work than

classroom learning
• Helps to get ready for some assignments
• The labs will likely include some course material that is

not covered in lectures or assignments
• Some labs may be canceled, but you can still use the

labs for your own practice

5-Sep-2018 (1) CSCI 2132 10



Programming Environment: Labs

• In the lab
– SSH from Mac/Windows (use putty on Windows)
– Server: bluenose.cs.dal.ca

• At home
– SSH from Mac/Win/Linux
– Work on Linux PC directly: All programs will be tested

at bluenose.cs.dal.ca
– You can also use VirtualBox on your own computer

5-Sep-2018 (1) CSCI 2132 11



Academic Integrity Policy

• Please read the given handout (also available at the
course web site)

• Suspected cases of plagiarism are referred to Academic
Integrity Officers, and may lead to serious consequences

• Plagiarism is defined as “the presentation of the work of
another author in such a way as to give one’s reader
reason to think it to be one’s own”

• Fully reference sources in your assignments and reports
• You can look at other code, but do not cut-and-paste!
• Discussing assignments verbally is likely not an issue,

but do not discuss it in writing or typing

5-Sep-2018 (1) CSCI 2132 12



Dalhousie Culture of Respect

• We believe that inclusiveness is fundamental to education and
learning.

• Every person has a right to be respected and safe.
• Misogyny and disrespectful behaviour on campus, wider community,

and social media is not acceptable. We stand for equality and hold
ourselves to a higher standard.

• Take an active role:
– Be ready: do not remain silent
– Identify the behaviour, avoid labeling, name-calling or blame
– Appeal to principles, particularly with friends, co-workers or similar
– Set limits
– Find an ally and be an ally, lead by example
– Be vigilant

5-Sep-2018 (1) CSCI 2132 13



Required Texts and Resources

• C Programming: A Modern Approach, by K. N. King, W.
W. Norton & Company, 2008.

• UNIX for Programmers and Users, by Graham Glass and
King Ables, Prentice Hall, 2003.

• Recommended Reading
• Unix and Linux System Administration Handbook, by Evi

Nemeth, Garth Snyder, Trent R. Hein, Ben Whaley,
edition 4th Edition, Pearson Education, 2010.

• The C Programming Language, by Brian W. Kerninghan
and Dennis M. Ritchie, edition 2, Prentice Hall Software
Series, 1988.

5-Sep-2018 (1) CSCI 2132 14



Course Prerequisite

• CSCI 1101 or suitable prior programming experience

5-Sep-2018 (1) CSCI 2132 15



Main Learning Objectives

• One sentence summary:
– This course should help you become an

effective software developer
• Divided into two learning goals:
1. Programming “in the Large”
2. Low-level Programming

5-Sep-2018 (1) CSCI 2132 16



Goal 1: Programming in the Large

• How to write large computer programs
– Software systems consisting of a large

number of modules (smaller programs)
– Modules are often written by different

programmers
• Specific techniques

– Software development processes
– Source code management
– Software testing and debugging

5-Sep-2018 (1) CSCI 2132 17



Goal 2: Low-Level Programming

• Understand how computer systems work at low
level
– High level: closer to users, high-level

abstraction
– Low level: Closer to hardware

• This supports Goal 1:
– Would you like to have someone design a car

without understanding how a car works?
– Complex systems are frequently built from a

low abstraction level
5-Sep-2018 (1) CSCI 2132 18



Why Unix-style system?

• What do we know about UNIX, Linux and
similar?

5-Sep-2018 (1) CSCI 2132 19



Why Unix-style system?

• UNIX was the first popular multi-user OS that set a
standard, which is stable and widely used

• Powerful Command-Line Interface (CLI), corresponding
to the sequential nature of computing

• Many utilities, that became well-known, standard tools
• Philosophy of elegant and modular solutions
• It has wide and significant use in practice: servers,

Linux, BSD (MacOS), Android, etc.

5-Sep-2018 (1) CSCI 2132 20



Open Unix-style Model

• Does not hide Operating System operations
• Provides all the basic low-level abstractions

that are used by modern Operating Systems:
1. Text-based interface
2. Files
3. Processes
4. Pipes
5. Virtual memory (Process Isolation)

5-Sep-2018 (1) CSCI 2132 21



Why C?

• Widely used and portable, and still very close to machine
code (i.e., assembly language)

• Efficient and gives much control to programmer
• Compiled, runs directly on the system (no VM layer)
• Does not hide the system, and allows fine-grained

system manipulation
• Forces the programmer to think about many low-level

issues
• Emphasizes the notion of sequential execution
• “Lingua franca” of programming world

5-Sep-2018 (1) CSCI 2132 22



Historic Importance of C

• Relatively old and small language, which is still
very much used without significant changes

• No close alternative
• It had a major influence on a majority of

modern languages: C++, PHP, Java, C#, Perl,
etc.

• C and C++ are still dominant languages in
large software system development (e.g.,
http://www.lextrait.com/Vincent/implementations.html)

5-Sep-2018 (1) CSCI 2132 23



Tentative List of Course Topics

Course Introduction
1. Fundamentals of Unix-style Operating Systems

• History
• Basic commands and utilities
• Structure (files, directories, processes, . . . )

2. C Programming Language and Software Development
• Introduction to C
• Software development life cycle

3. Program Organization and Dynamic Memory Allocation
• Writing large programs, make
• Pointers and dynamic memory allocation

4. Shell Scripting and Control Version Systems

5-Sep-2018 (1) CSCI 2132 24


