
Lecture 26 p.1

Faculty of Computer Science, Dalhousie University 5-Nov-2018
CSCI 2132 — Software Development

Lecture 26: Writing Large Programs

Location: Chemistry 125 Instructor: Vlado Keselj
Time: 12:35 – 13:25

Previous Lecture

– A common mistake with VLA declarations
– More string reading examples
– Buffer overflow risks
– String library functions

20.5 Command-Line Arguments in C

Using what we learned about strings, we can now process command-line arguments of a program. In C, these are
passed as an array of strings. To make use of command-line arguments, we should define the main function in the
following form:

int main(int argc, char* argv[]) {
...
}

Here, argc means “argument count” and argv means “argument values”. Thus, argc stores the number of
arguments in the command line, while argv stores an array of char pointers, and each pointer points to a string
that stores an argument. the first argument argv[0] points to the string that is the command name as executed,
usually from the shell.

Let us explain this in greater detail using an example. Here, we write a program called sortwords, which sorts
the command-line arguments lexicographically, and prints them in sorted order. Let us say that we invoke this
program using the following command:

./sortwords orange apple banana

The program should produce the output

apple
banana
orange

The following figure shows the content of argv:

argv
argv[0] -------> ./sortwords\0
argv[1] -------> orange\0
argv[2] -------> apple\0
argv[3] -------> banana\0
argv[4] stores a NULL pointer

November 5, 2018, CSCI 2132 http://web.cs.dal.ca/˜vlado/csci2132/

http://web.cs.dal.ca/~vlado/csci2132/


Lecture 26 p.2 CSCI 2132

Here a NULL pointer is a special pointer that points to nothing. In this example, we have argc = 4, which is
the number of command-line arguments, including the pathname of the command itself ("./sortwords").

We can use array/string notation that we learned before to manipulate this array. For example, argv[2][4]
stores the character ’e’.

For the implementation of sortwords, see:

˜prof2132/public/sortwords.c

Our implementation uses insertion sort. Pay attention to two things: First, the subscripts we use in our code. Here
we sort argv[1], argv[2], . . . , argv[argc-1], not the entire argv array. Second, we use strcmp to
compare strings.

The code is also included here:

/* Program: sortwords.c */
#include <stdio.h>
#include <string.h>

int main(int argc, char* argv[]) {
int i, j;
char *key;

for (i = 2; i < argc; i++) {
key = argv[i];

j = i-1;
while (j >= _____ && strcmp(argv[j], key) _____ 0) {

argv[j+1] = argv[j];
j--;

}

argv[j+1] = key;
}

for (i = ______; i < ________ ; i++) {
puts(argv[i]);

}

return 0;
}

We will see more examples on strings when we learn how to allocate strings dynamically.

21 Writing Large Programs
Previously we learned that the primary goal of this course is to learn how to “program in the large”. A large
program consists of many modules, and programmers work on different modules of the same program. It is logical
to use one or more files for each module, which facilitates collaboration and reusing.



CSCI 2132 Lecture 26 p.3

Header Files

– Files that allow different source files (*.c) to share
– Function prototypes
– Type definitions
– Macro definitions
– etc.

– Naming convention: *.h

The #include Directive

– Tells the preprocessor to open a specified file and inserts its content into the current file
– Form 1: #include <file_name>

– Search the directories in which system header files reside
– On bluenose: /usr/include, . . .

– Form 2: #include "file_name"
– First search the current directory, if not found then
– directories in which system header files reside

– Question: Which form for your own header files?


	Command-Line Arguments in C
	Writing Large Programs
	Compilation of Large Programs
	The Make Utility

	Structures
	Dynamic Memory Allocation
	Heap (Free Store)
	Additional Allocation Functions

	Linked Lists in C
	Linked List Example: Student Database
	Merge Sort with Linked Lists


