Lecture 9 p.1

Faculty of Computer Science, Dalhousie University

CSCI 2132 — Software Development
Lecture 9: Formatted Input and Output in C

Location: Chemistry 125 Instructor: Vlado Keselj
Time: 12:35 - 13:25

24-Sep-2018

Previous Lecture

— Extended regular expressions (ERE)
— Grep variations
— Introduction to C
— writing a simple program
compilation process
C basics, similarities and differences with Java
printing output and reading input
a simple HST program

9 Formatted Input and Output in C

— Necessary touse #include <stdio.h>
— Main functions: printf (output), and scanf (input)

9.1 Formatted Output: printf

We have already seen that we can print to the standard output in C using a library function called print f. The

following is the syntax of printf:

printf (format_string, expl, exp2, ...);

Here a format_stringis a C string that may contain conversion specifications. We will learn in more general
terms what is a C string later, but for now we can think of it as a string literal, i.e., a string given between two
double-quotes (" and "). A conversion specification is a place holder indicating where the value of an expression
is to be filled in during printing, and in what format this value will be printed. For example, the following piece of

code:

int 1 = 7;

double x = 2.71;

char ¢ = "A";

printf ("Printing vars: i1 = %d, x = %.2f, c = %c\n",

would produce:

Printing vars: i = 7, x = 2.71, ¢c = A

September 26, 2018, CSCI 2132 'http://web.cs.dal.ca/~vlado/csci2132/.

http://web.cs.dal.ca/~vlado/csci2132/

Lecture 9 p.2 CSCI 2132

L3

We can see that the conversion specifications ‘%d’, ‘% . 2£’, and ‘$c’ are replaced with the values of the expressions
i, x,and c.

[)

Generally, a conversion specification starts with character % and ends with a conversion specifier. The printf
function has an elaborate format for conversion specifications, which can be briefly explained as follows:

— % character starts the specification, and it is mandatory.

— flags are optional characters, and there could be zero or more flags, such as + in $+d, specifying a mandatory
sign when printing a number, or — specifying left justification.

— minimal width is an optional positive integer specifying minimal width of the printout, as in $10d, which
may be useful in aligning numbers in a table.

— . precision is an optional period (.) followed by an integer (negative integer has the same effect as zero),
which is the number of decimal places to be printed for floating point numbers, but also minimal number of
digits for integers, and maximal number of characters for strings.

— length modifier is an optional character or two, such as 1 used for integers to denote a long integer, or it
can be used with ‘£” as ‘1£’ to denote double instead of float. However, this particular modification is not
necessary.

— conversion specifier is the final mandatory character, denoting how the value of the variable is to be converted
to the printed string representation. The most frequently used ones are:

d for an integer,
£ for a double or a float,

for a character,

for a string, and

for a literal percent sign.

n Q

o\

As in any string literal, as we will see, we can use escape sequences, such as ‘\n’ for a new line, ‘\t’ for a tab
character, ‘\\’ for a backslash itself, and some others. You can use the command man 3 printf on bluenose
to read about the print £ function in more details.

9.2 Formatted Input: scanf

The function scanf is used to read the standard input according to a specific format.

The scanf function is a function for reading input, which, similarly to print f uses a format string to specify
how is input going to be converted to the values of given variables. The function scanf also uses a format string.
Let us look at the following example:

int i, 3j;
double x, vy;
scanf ("%d%d%$1£s1f", &i, &3, &x, &y);

When this code is executed, the scanf function will wait for the user’s input, and when the user types four values
for the variables 1, j, x, and y; e.g.,

1 -20 .3 -4.0e3

the corresponding values will be stored and the execution of the program will continue. The symbol & is required
here, and forgetting it is a common beginner’s error. It is usually required, but not in all situations, such as when
the variable is a string. The symbol & is an operator and its meaning will become more clear once we introduce
pointers. For now, we just say that the scanf function expect memory addresses where it can store read values,
and those addresses of variables are provided by the & operator in front of a variable name. We will just assume
for now that we need always to use this operator.

The way scanf works is very much like a pattern-matching process. The scanf function processes the format string
from left to right. For each character of the string or conversion specification, the scanf will do an appropriate
matching with the input, and for every conversion specification, it will match an appropriate input, convert it, and

CSCI 2132 Lecture 9 p.3

store it in the memory at the provided address. If there is a mismatch during this matching process, the scanf
function will stop and return without assigning all values. The scanf function generally returns the number of
successfully converted values, and that is how we can know how successful the process was.

scanf Conversion Specifications

These are the general rules of how scanf works:

— A sequence of white-space characters (space, tab, newline, and some others) is matched with any sequence
of white-space characters from input, including none.

— Any character other than $ must be matched with itself in the input.

— The character % denotes a beginning of a conversion specification. The input is read according to this
specification and the converted value is stored in the next address given in the argument list. All conversions
will first skip any white-space characters from input, unless explicitly stated below. The percent character
may be optionally followed by some optional modifiers, such as:

* which causes converted value to be discarded and not assigned to the next parameter;

integer which limits maximal number of characters to be converted from the input; and

1 which may be used for integers for the long int values, or for floating-point numbers for the

double values.

Finally, the conversion specifier comes at the end, and the following are mostly used ones:

Fh Q. o°

0

matches a literal ‘%’ without conversion.

matches a decimal integer and converts it to an int.

matches a floating-point number, and stores it into a f1oat or if we use modifier 1 stores it into a
double.

matches a sequence of non-white-space characters and stores it into a string (we will learn later about
strings).

c matches a sequence of characters whose length is optionally given before c (default is 1) and stores it

into a string. This specifier does not ignore white space.

[matches a non-empty sequence of acceptable characters and stores them into a string. Similarly to

regular expressions and wildcards, acceptable characters can be listed, like in [apm], we can use
ranges, as in [a—-zA-Z], and we can list unacceptable characters using ", asin ["a-z].

n does not match anything. Instead, it simply stores number of characters consumed so far by scanf in

the next int argument.

You can read more about scanf using the command ‘man 3 scanf’.

For example, we have the following piece of code:

int i,

Ji

double x, vy;
scanf ("%d%d%1£f%1f", &i, &3, &x, &y);

If the user enters the following three lines of input:

-20

.3

-4.0e3

by the description of the above pattern matching process, these four values will be assigned to variables correctly,
even though there are multiple space characters and newline characters between them. The final newline will be
put back to the input sequence and be the 1st character read by the next scanf.

If the user enters the following line of input for the same code snippet:

Lecture 9 p.4 CSCI 2132

1-20.3-4.0e3
Then the values of ¢, j, x and y after this will be 1, —20, .3, and —4.0e3 = —4000, respectively. If the user enters
1 -20.3 -4.5 5.5

Then the values of ¢, j, x and y after this will be 1, —20, .3, and —4.5, respectively. The 5.5 (including the space
character before it) will be left for the next scanf. If the user inputs

1.1 -20 -4.5 .5

Then after assigning 1 to ¢, scanf sees a dot, and it returns without processing the rest of the format string and
reading more input.

	Formatted Input and Output in C
	Formatted Output: printf
	Formatted Input: scanf

