
24th International Symposium INFOTEH-JAHORINA, 19–21 March 2025

Single-source Publishing using Starfish UPTEP
Method: Applications in Multilingual Web Site

Development and Courseware Content Management
Vlado Kešelj

Faculty of Computer Science
Dalhousie University

6050 University Ave, NS, Canada
vlado@cs.dal.ca

Abstract—Single-source publishing has been known for decades
as a method of creating and maintaining published content from
a single source document, while generating different content
forms. It has usually been associated with the maintenance of a
system documentation and it has been implemented in specialized
systems around certain particular document forms. We present
a case that such an approach would be useful in an open-ended
general area of text-based document management applications,
such as creation and maintenance of multi-lingual web sites and
courseware material maintenance in LaTeX. Such application
areas are very dynamic and open in types of target text, which is
used for further processing and document rendering, so a closed
system for single-source publishing would not be appropriate. We
demonstrate an approach using universal text preprocessing and
text-embedded programming (UPTEP) that can be effectively used
for this task. This solution approach is validated through the use
of open-source Starfish system, which is a general UPTEP system.
We show how the UPTEP approach to single-source publishing
can be readily implemented using Starfish on the two case studies.

Index Terms—Preprocessing and Text-Embedded Programming
(PTEP); Universal PTEP (UPTEP); Web Engineering; Course-
ware Management; Single-source Publishing; Text Processing;

I. INTRODUCTION

Single-source publishing has been known and was in use for
many years. It was explicitly discussed since at least 30 years
ago [1], [2], [3], when it was particularly useful in generating
and maintaining system documentations. The main advantage
of a single-source publishing system is that it is easier and less
error-prone to maintain documentation in a single source file
or files, where we have only one place to generally update any
change to the documentation content. From this single source,
different documents in form, modality, length and similar, are
generated. In the context of this line of research, a specific
system would usually be built for a particular use, with pre-
specified language of the source documentation, and conversion
branches would be implemented which generate different out-
put document formats. One of the earliest strong advocates for
single-source publishing in software development was Donald
Knuth in 1980’s with his approach to program writing using
the Literate Programming approach, as implemented in his

early system WEB for the Pascal programming language, and
the in an immediately following version of CWEB for the C
programming language. [4], [5], [6]

A. Closed-system vs. Open-system Single-source Publishing

We refer to this traditional approach to single-source publish-
ing as a closed-system single-source publishing. Implementing
such a system is a relatively obvious and straight-forward,
and these systems were usually based on defining a unified
SGML or XML based source markup language, which is then
compiled and translated into some target formats, such as
HTML, PDF, and similar. A disadvantage of this approach
is that it is relatively rigid, providing typically a predefined
template about how documents will look like, and it cannot be
used in a fast prototyping approach, where we often develop
the target document, and then we want to generalize it into
multiple document modalities. Two examples of such situations
are development of a web site, and development of a course
content.

B. Web Site Example

Let us assume that we have developed a prototype of a web
site with several pages, such as index.html, a.html, and
b.html, and others such as images, CSS and JavaScript files;
and we would like to mirror it in another natural language, in
files with slightly different names, such as index-en.html,
a-en.html, and b-en.html. We choose language exten-
sions for file names such as -en for English, or -sr for
Serbian. We will focus on HTML files, but the approach is also
applicable to other textual files. Creating and maintaining this
system would be made easier by having a single-source files
where we keep sentences or paragraphs in different languages
in the same file in a close proximity. We could then imag-
ine extending such system into multiple languages, multiple
language encodings or alphabets, and even incorporating an
automated translation function which would keep aligned texts
synchronized. To make this work, we would need a system
to process the single-source documents into documents with
different modalities; i.e., languages.

1



24th International Symposium INFOTEH-JAHORINA, 19–21 March 2025

C. Courseware Example

The second example is a courseware content management
system, where we may be developing lecture notes in LATEX for
students, and we want to maintain a set of slides in parallel with
those notes, which are also created in LATEX. Alternatively, we
may be developing slides first, and follow with their inclusion
in notes, and gradual morphing of those notes into a textbook-
style narrative of lecture notes. The target typesetting language
does not have to be LATEX, we could imagine the same scenario
with HTML, Markdown, or other languages that can generate
slides and documents, or even a mixture of different languages,
one for slides and another one for lecture notes. Additionally,
we can add more modalities other than just slides and lecture
notes—there could be course notes as a more textbook-like set,
or instructor notes as larger-font notes for use by an instructor
in class.

Both of these examples could be implemented using a
customized text processing systems, but that would lead to
developing one-off customized system each time we generalize
our documents into a single-source publishing format. Our
objective is to show that a standardized universal preprocessing
and text-embedded programming system (UPTEP), such as
Starfish, can readily be used for this task by the standard brief
customized modifications envisioned by such system.

The contributions of this paper can be summarized in three
main items:
(1) We propose a solution to the important problem of open-
system single-source publishing using the universal preprocess-
ing and text-embedded programming (UPTEP) approach.
(2) The UPTEP approach to open-system single-source publish-
ing is implemented as a set of functionalities in the software
system Starfish—an open-source implementation of UPTEP in
Perl.
(3) The implementation is validated in two practical case
studies: multi-lingual web site development and maintenance,
and courseware content management.

The rest of the paper is organized as follows: Section II
presents related work in the problem of single-source document
publishing. Section III describes the UPTEP methodology and
its Starfish implementation, which is applied as a solution
approach to our research problem. Section IV presents an
evaluation of our approach through two validation cases in
multi-lingual web site development and courseware content
development. Finally, we conclude the paper in section V
by summarizing the paper and giving some ideas for future
research.

II. RELATED WORK

The foundation ideas of single-source document publishing
can be linked to the invention of the TEX typesetting sys-
tem [7], with the first appearance in 1978, and the concept
of Literate Programming [4], [6] in 1980s by Donald Knuth.
Literate programming was initially implemented in the WEB
system, with Pascal as one of the target languages, and later
reimplemented with C as CWEB, which had its initial release

in 1987. The Literate Programming methodology was published
and introduced as a better way to write programs and well-
typeset program documentation in the same time. Although
specialized in this way for software development, from a more
general point of view it can be regarded as single-source
publishing system, with C as a target programming language,
and TEX as another target format, used as typesetting language
for documentation.

Later developments led to explicit closed-system single-
source document publishing systems, one of which is WinHelp,
which was released as a part of the Windows 3.0 system
in 1990. [3] The SAS Institute described their single-source
publishing system based on SGML in 1996 [2]. Later and up
to this date, there were a number of single-source publishing
systems, some of the most popular ones are DocBook [8] and
Oxygen [9], which are all closed-system type systems.

The UPTEP universal preprocessing and text-embedded pro-
gramming methodology was introduced in 2001 [10] and later
further described and formally defined [11], [12], [13], [14].

III. UPTEP AND STARFISH METHODOLOGY

The goal of Universal Preprocessing and Text-Embedded
Programming (UPTEP) is the create a standardized, univer-
sal, and uniform framework for text preprocessing and text-
embedded programming, which could be easily and effectively
used in generic textual contexts [14]. Starfish is one actual
implementation of this approach [10].

The UPTEP framework is implemented in the Starfish open-
source system. The system is available in the CPAN [10] Perl
software repository and it is easily installed in the Linux and
similar Unix-like system, as well as Windows systems with Perl
language installed. The starting idea of the Starfish approach
is based on inserting short snippets of Perl code between
delimiters <? and !> in an arbitrary text. If the starfish
command is executed on such file, the snippets are executed
and their input appended to the snippets themselves. This is
called the update mode of computation. The replace mode of
computation works by treating the file with the snippets as a
source file, and writing the output as the target file. In this
way, the snippets in the source file are replaced with their
output in the target file. The replace mode is similar in a way
to the concept of notebooks in R or Jupyter, where the code
is immediately followed by its output. In order for the replace
mode to work in direct textual context, Starfish allows snippet
code to be protected by commenting it out from the surrounding
text context.

In these two case studies, we will use the replace mode of
Starfish. The replace mode is similar to PHP in the sense that
the code snippets are delimited by the escape sequences <?
and !> by default. The Starfish system is flexible in the sense
that it used different espace sequences in some file types, and
it allows the user to redefine these espape sequences.

Table I shows some examples of escape sequences in
Starfish, and compares them to some other text-embedded pro-
gramming systems. The reason why these other text-embedded
programming systems cannot be easily used in our two case ex-
amples of single-source publishing is that the escape sequences

2



24th International Symposium INFOTEH-JAHORINA, 19–21 March 2025

TABLE I
ESCAPE STRINGS IN SOME SYSTEMS

System Escape Strings

Begin End

PHP <? ?>

<?php ?>

ASP <% %>

JSP <% %>

ePerl <? !>

Text::Template { }

Text::Oyster <? ?>

System Escape Strings

Begin End

HTML::EP <ep-perl> </ep-perl>

Starfish (default) <? !>

Starfish (HTML style) <!--<? !>-->

Starfish (user defined) <?sfish !>

Starfish (user defined) any string any string

and semantics of code snippets are fixed, and they do not allow
as direct and easy implementation of markup needed for single-
source publishing shown in our examples.

The flexibility of Starfish which is used is two-fold:
1) the escape sequences can be redefined, and defined in more
forms, including regular expressions; and
2) the semantics of the snippet can be changed not only to
execute embedded language and use predefined output routine,
but to for example selectively include or ignore text, or to have
some other special semantics.

This pair of escape sequences or other form of code activa-
tion and the semantics of the activation is called a hook in the
Starfish context. The hooks can be added or removed in the
snippets themselves, or defined in the Starfish configuration
files, which makes it highly flexible to easily implement short
and convenient markup conventions.

IV. SINGLE-SOURCE PUBLISHING IN STARFISH

Both examples of single-source systems, that we mentioned,
can easily be implemented in Starfish, due to its flexibility.
Namely, the escape sequences <? and !> can be redefined
to define arbitrary so-called hooks, which can be activated in a
number of ways. For example, in the web multilingual example,
we can define in the source file index.html types of hooks
such as shown in Listing 1 or we can use multi-line hooks such

:sr tekst na srpskom jeziku
:en text in the English language

Listing 1. Example of multi-lingual one-line hooks to use text versions in
Serbian (transl. “text in the Serbian language”) and English.

as shown in Listing 2. When producing a target file such as
index-sr.html only the lines tagged as ‘sr’ are selected,
and for index-en.html only the lines tagged as ‘en’ are
selected. The other untagged lines are output in both cases.

<sr>
tekst na srpskom jeziku
</sr><en>
text in the English language</en>

Listing 2. Example multi-line hooks to use text versions in two languages.

This example shows how to maintain a site in two languages,
but it can directly be generalized to multiple languages by
introducing multiple tags. One such example would be official
web sites in Bosnia and Herzegovina where frequently versions
in three (BCS), or four (BCS and English) languages are
presented, with addition of two alphabets (Latin and Cyrillic)
for some languages.

Similarly in the courseware example, we would define tags
such as ‘sl’ for slide content, and ‘l’ for lecture notes content
to separate target content for these two types of documents.

A. Starfish Multi-lingual Web Site Implementation

The Starfish can process any HTML document with pre-
defined hooks <!--<? and !>-->. In order to setup hooks
for language separation in the output files as describe above,
we simply need to add new hooks depending on the target
output files. For the Serbian and English languages, with on-
line tags :sr and :en and general tags <sr>..</sr> and
<en>..</en, we need to insert the code at the beginning of
an HTML document as shown in Listing 3.

<!--<?
if ($Star->{OUTFILE} =˜ /-sr.html$/) {

sfish_add_tag(’sr’, ’echo’);
sfish_add_tag(’en’, ’ignore’);

elsif ($Star->{OUTFILE} =˜ /-en.html$/) {
sfish_add_tag(’en’, ’echo’);
sfish_add_tag(’sr’, ’ignore’);

}
!>-->

Listing 3. Initial Starfish code to enable one-line and multi-line hooks

The above code is Perl snippet code in Starfish, which uses
pattern matching to decide which parts of the source file to use
based on the name of the output file. The translation of the
single-source file into the target file is done with the simple
starfish commands in a command-line interface as shown in
Listing 4.

starfish -replace -o=t/index-sr.html \
index.html.sfish

starfish -replace -o=t/index-en.html \
index.html.sfish

Listing 4. Starfish commands in shell (command-line interface) to produce
language variations of page.

The -replace option indicates a replace rather than an
update mode. We would typically use also a -mode=644
option to make output files readable for a Web server.

The initial code snippet with setting up new hooks, shown
above, may still be too much of a hassle to be inserted in

3



24th International Symposium INFOTEH-JAHORINA, 19–21 March 2025

src/index.html.sfish

src/a.html.sfish

src/b.html.sfish

...

t/index−en.html

t/a−en.html

t/b−en.html

...

t/index−sr.html

t/a−sr.html

t/b−en.html

...

Web

browser

starfis
h

starfish

Web

server

Fig. 1. System Overview of the Multi-lingual Web Site Example

each HTML source file, so we can add it to the special
starfish.conf file, which is typically executed at the
beginning of each Starfish file.

B. Starfish Courseware Implementation

The courseware single-source publishing solution is imple-
mented in a very similar way as the multi-lingual Web site.
However, in practice it does use somewhat different tags. First,
most of the content material prepared goes into lecture notes,
and we would prefer to include it without any particular tags.
On the other hands, the slides material is only sometimes added
at some particular places, so we will use the tag :slide
for one line, or the general tag <slide>. . .</slide> for
material to be included exclusively in slides. We would also
define tag :sl,l/<sl,l>. . .</sl,l> for material to be
included in both slides and lecture notes. The Starfish snippet
which should be added to the beginning of the .tex.sfish
file, or in the configuration starfish.conf file, to set up
these kind of tags is shown in Listing 5.

<? if ($Star->{OUTFILE} =˜ /-notes.tex$/) {
sfish_add_tag(’sl,l’, ’echo’);
sfish_add_tag(’slide’, ’ignore’);

elsif ($Star->{OUTFILE} =˜ /-slides.tex$/) {
sfish_add_tag(’sl,l’, ’echo’);
sfish_add_tag(’slide’, ’echo’);
sfish_ignore_outer;

} !>

Listing 5. Starfish code for setting up tags for slide-notes separation in LATEX
courseware contents.

Sometimes we may want to be able to include slide LATEX
content which shows in slides, and in the notes it is nicely
framed as a slide, and not included simply as itemized con-
tent. We may want also to introduce only a general tag
<slf>. . .</slf> to indicate such content. In order to frame
and properly set up the content in the lecture notes, we define
LATEX environment \begin{slide}. . .\end{slide}, and
add a hook using a lower level function in Starfish based
on regular expression matching as shown in the snippet in
Listing 6.

<? if ($Star->{OUTFILE} =˜ /-notes.tex$/) {
$Star->addHook(qr/%?<slf>\n?((?:.|\n)*?\n)

%?<\/slf>\n?/x,
sub{"\\begin{slide}$_[2]\\end{slide}\n"});

elsif ($Star->{OUTFILE} =˜ /-slides.tex$/) {
$Star->addHook(qr/%?<slf>\n?((?:.|\n)*?\n)

%?<\/slf>\n?/x,
sub{$_[2]});

} !>

Listing 6. Use of regular-expression based hooks in Starfish to create a
customized slf tag.

The above hook setup is based on using regular expres-
sion to define a hook to capture text excerpts between tags
<slf>. . .</slf>, which may or may not be prefixed with
a percent sign (%), which is normally a comment character
in LATEX. The coursenotes hook will produce the text excerpt
within the environment \begin{slide}. . .\end{slide},
while in the slides there is no need for this environment. The
slide environment in LATEX can be defined to make a note “Slide
notes:” and put the slide content in a framed box of width 10cm,
using the LATEX code as shown in Listing 7.

% Showing slide within notes
\newsavebox{\myslidebox}
\newenvironment{slide}{\begin{lrbox}
{\myslidebox}
\begin{minipage}{10cm}\raggedright}
{\end{minipage}\end{lrbox}
\shortstack[l]{{\it Slide notes:}\\%
\fbox{\usebox{\myslidebox}}}}

Listing 7. Example of LATEX code that would include slides in coursenotes
associated with Listing 6.

C. Overall Architecture

The overall architecture of the web single-source publishing
system is shown in Fig. 1. When moving from a typical web site
into single-source publishing, it is a good practice to separate
the actual source files that are directly edited from the static
or dynamic files read by the web server. The site would be
moved into a source directory src/ and we would rename the
files by adding the extension .sfish. Using a Makefile,
we prepare recipes to generate target files in the target public
directory t/. (Of course, the names of these directories can be
arbitrarily renamed.) Based on whether the target file name is
ending with -en or -sr, the text with appropriate language
would be produced from the source .sfish files.

4



24th International Symposium INFOTEH-JAHORINA, 19–21 March 2025

t/cs01−notes.tex

t/cs02−notes.tex

t/cs−lab01−notes.tex

...

t/cs01−slides.tex

t/cs02−slides.tex

t/cs−lab01−slides.tex

...

starfis
h

starfish

src/Lec01.tex.sfish

src/Lec02.tex.sfish

src/Lab01.tex.sfish

...

latex

latex

t/cs01−slides.pdf

t/cs02−slides.pdf

t/cs−lab01−slides.pdf

...

t/cs01−notes.pdf

t/cs02−notes.pdf

t/cs−lab01−notes.pdf

...

Fig. 2. System Overview of the Courseware Example

The overall architecture of the courseware example is quite
similar to the web example and it is shown in Fig 2. The
LATEX starfish files do not need to be separated necessarily
in a different directory, but it is a good practice to put target
generated files in a temporary directory such as tmp/ to avoid
accidentally editing them instead of the source files. The single-
source files have typically an extension .tex.sfish, and the
final rendered files are PDF files produced form the target LATEX
files.

V. CONCLUSION

In this paper we first show by two examples, one in a multi-
lingual web site creation and maintenance, and another in a
courseware content development, the need for an open-system
single-source document publishing system. While the single-
source document publishing has been known for a number of
years, even tracing to Knuth’s work in 1980’s, so more than 40
years ago, it has been mostly implemented as a closed-system
with specific target formal languages. In our examples, we show
that some modern applications, such as web site development
for several languages in parallel, or courseware development
for multi-modal content delivery, require a more flexible open-
system approach.

Next, we show how an existing framework aimed at the
universal preprocessing and text-embedded programming (UP-
TEP) can be used to effectively put together such open-system
single-source publishing systems. Starfish is an actual open-
source implementation of an UPTEP system, and using its
standard hooks we show how it is used in the two examples of
web site development and courseware.

As the future steps, we are looking at extending the shown
examples, and into further improvement of implementation the
make the process of development more efficient. The proposed
UPTEP system can also be further extended using Large

Language Models (LLMs) for semi-automated development of
content. In particular, in the case of a multi-lingual web site, an
automated translation functionality through the use of API with
the services such as Google translate, would make the process
even more efficient.

REFERENCES

[1] S. Neilson, “Single-sourcing text — managing thoughts in multiple
documents,” 2015 (accessed Jan 2025), https://wordpress.stuartneilson.
com/single-sourcing-text-managing-thoughts-in-multiple-documents.

[2] C. Roposh and H. Schoenrock, “Developing single-source documentation
for multiple formats,” in Proceedings of the 14th Annual International
Conference on Systems Documentation, 1996, pp. 205–212.

[3] Wikipedia.org, “Single-source publishing,” 2025 (accessed Jan 2025),
https://en.wikipedia.org/wiki/Single-source publishing.

[4] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,
no. 2, pp. 97–111, 1984.

[5] J. Bentley and D. Knuth, “Programming pearls: Literate programming,”
Communications of the ACM, vol. 29, no. 5, pp. 384–369, 1986.

[6] Wikipedia.org, “Literate programming,” 1984 (accessed Jul 1, 2020),
https://en.wikipedia.org/wiki/Literate programming.

[7] D. E. Knuth, The TEXbook. Reading, MA, USA: Addison-Wesley, 1986.
[8] N. Walsh and R. L. Hamilton, DocBook 5: The Definitive Guide: The

Official Documentation for DocBook. ”O’Reilly Media, Inc.”, 2010,
http://www.cs.unibo.it/∼cianca/wwwpages/dd/Docbook.pdf.

[9] oxygenxml.com, “oxygen xml editor,” 2025, https://www.oxygenxml.
com/.

[10] V. Kešelj, “Perl module Text::Starfish and starfish: A Perl-based system
for preprocessing and text-embedded programming,” 2001–20 (accessed
Jul 1, 2020), https://metacpan.org/pod/Text::Starfish.

[11] ——, “Perl module Text::Starfish and starfish: A Perl-based system for
preprocessing and text-embedded programming,” 2001–20 (accessed Jul
1, 2020), http://vlado.ca/starfish.

[12] ——, “Starfish: A Perl-based framework for text-embedded programming
and preprocessing,” The Perl Journal, June 2005.

[13] ——, “A prototype for universal preprocessing and text-embedded pro-
gramming,” arXiv preprint arXiv:2007.02366, 2020, https://arxiv.org/abs/
2007.02366.

[14] ——, “A proposal for universal preprocessing and text-embedded pro-
gramming (ptep) system,” in Proceedings of 21th International Sympo-
sium Infoteh-Jahorina 2022. IEEE, March 2022.

5

https://wordpress.stuartneilson.com/single-sourcing-text-managing-thoughts-in-multiple-documents
https://wordpress.stuartneilson.com/single-sourcing-text-managing-thoughts-in-multiple-documents
https://en.wikipedia.org/wiki/Single-source_publishing
https://en.wikipedia.org/wiki/Literate_programming
http://www.cs.unibo.it/~cianca/wwwpages/dd/Docbook.pdf
https://www.oxygenxml.com/
https://www.oxygenxml.com/
https://metacpan.org/pod/Text::Starfish
http://vlado.ca/starfish
https://arxiv.org/abs/2007.02366
https://arxiv.org/abs/2007.02366

	Introduction
	Closed-system vs. Open-system Single-source Publishing
	Web Site Example
	Courseware Example

	Related Work
	UPTEP and Starfish Methodology
	Single-source Publishing in Starfish
	Starfish Multi-lingual Web Site Implementation
	Starfish Courseware Implementation
	Overall Architecture

	Conclusion
	References

