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Abstract
This study looks at how Reinforcement Learning (RL) approaches can be used to

understand player behavior in Electronic Gaming Machines (EGMs) found in venues
like casinos. The gaming business is keen to learn about the many types of player be-
havior and create virtual players mimicking these behaviors. To achieve this, we trained
RL models to mimic player behavior by grouping different playing styles with K-means
clustering and determining termination states for one of the playing behaviors. The
Proximal Policy Optimization (PPO) and Actor Critic using Kronecker-Factored Trust
Region (ACKTR) models were subsequently implemented, with the agents being re-
warded based on their proximity to the termination states. Our findings suggest that
the ACKTR model performed better than the PPO model, with the generated playing
behavior demonstrating a high level of statistical similarity to real-world player behavior
within the selected cluster.
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1. Introduction

Electronic Gaming Machines (EGMs), which are gambling machines installed in a range of
locations such as casinos, bars, and hotels, have become more and more popular, attracting
the attention of not just the gaming industry but also of the government and researchers.
The availability of gambling activities has increased due to internet gaming [1]. According
to the 2018 Canadian Community Health Survey (CCHS), nearly two-thirds (64.5%) of
Canadians aged 15 or older (18.9 million) reported gambling at least once in the previous
year [2]. These games can be highly addictive as there is a chance of winning a high
amount of money in a short duration. In some situations, people continue to spend time
and money on gambling even though it affects them mentally and financially, which is
identified as a disorder named the problem gambling [3, 4]. The government is working
to tackle this problem by promoting responsible gambling resources, while researchers have
conducted studies [5–8] to identify the gamblers at-risk of problem gambling. Most of the
work in this field has been done on limiting problem gambling, however, generating virtual
players that mimic the real-world players can help industry and researchers test experiments
and conduct a detailed behavioral analysis to understand the behavioral patterns in-depth
without identifying the person. Future behavior in the particular situation of a real player
could be anticipated using this virtual player.

The major challenge in working with EGM data is that they are anonymous, which means
that these machines do not keep any identifying information about the players in their logs
and that they do not distinguish between various players’ sessions. In this research, we are
using sessions that were sessionized based on balance and the pauses taken while playing [9].
However, these sessions do not contain any information about the experience of the player.

We developed agents using Reinforcement Learning (RL) to produce such sessions in
order to mimic the behavior of real-world EGM players. To mimic one particular player’s
behavior, we have to separate all types of behaviors. We used an unsupervised learning
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algorithm, namely the K-means clustering for grouping the sessions with similar behavior of
players. This similarity is measured using the Euclidean distance. Moreover, for replicating
a particular behavior we are defining termination states using some selected features and
values from one cluster. These termination states are used for reward calculation of the RL
models, which get higher rewards as the RL agent approaches towards these termination
states. The closeness of the current state of the agent to the termination states is measured
by the Euclidean distance. We trained two RL algorithms, Proximal Policy Optimization
(PPO) and Actor Critic using Kronecker-Factored Trust Region (ACKTR), to generate
sessions with a particular behavior.

1.1. Contributions

The four most important contributions of this paper are as follows:
(1) Developed a methodology for mimicking the behavior of real-world players using

reinforcement learning.
(2) Demonstrated the effectiveness of the proposed approach in reducing game devel-

opment time and costs by using virtual players for testing and validation.
(3) Contributed to the advancement of the field of artificial intelligence and machine

learning in the context of mimicking game players.
(4) Provided a valuable tool for game developers to improve the player experience and

create more engaging games.
The remainder of the paper is organized in the following way. Section 2 reviews back-

grounds on EGM and related work. In section 3, we discuss the methodology of this study.
Section 4 details the experimental setup. In section 5, we discuss the results of Reinforcement
Learning models and compare them with real-world players’ sessions, followed by providing
a conclusion and future directions of the concept in section 6.

2. Background and Related Work

Electronic Gaming Machines (EGMs) [10] are a common type of gambling machine found
in casinos, clubs, and other public areas where people congregate for recreation. Although
these devices, which use sophisticated technology, are actually computers, many of them
still have reels that purport to spin and are evocative of earlier gambling machines. A
random number generator is the base of every EGM. The computer retrieves the numbers
created at that moment and transforms them into a display on the screen when a button
or touch screen is pressed. The numbers represent a location on a reel map (the quantity
and arrangement of symbols on each virtual reel) and a pay table (the payouts for any
combination of symbols appearing on a line). For instance, the pay table will be used to
map the random process’s generation of three cherries to a payout of, say, two credits. These
machines don’t keep track of most of the play data and are stateless. Loyalty cards [11]
is a major update that certain venues have implemented that are used to track customer
information in the casino. As a result, well-formed data that takes into account playing
sessions, games played, and money spent is produced. With this, the sessionizing task is
entirely relinquished, as well as a history of user play data is also provided. Loyalty cards
are not required and are not even used by the majority of venues [12], therefore typical data
processing is still in use.

Latifi [9] effectively sessionized user datasets using EGM logs, which contain game data
and metadata but no user ID. Assumptions were made that players only use one machine
and sessions start with a cash-in and end with a cash-out or playing all credits and turning
off the machine. The second assumption took into account the minimum cash balance and
idle time threshold. If the time gap exceeds the idle time threshold and credit is less than
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the minimum, the session is terminated. Multiple cash-outs within a session are allowed.
Experiment results show that using idle time of a few minutes and a minimum amount of
money around a couple of dollars gives actual player session duration. The study uses data
sessionized using this method, making it important.

Studies have been conducted on detecting gamblers’ personas and predicting at-risk prob-
lem gambling using unsupervised learning techniques like clustering [5–8]. Problem gam-
bling is characterized by excessive gambling behavior despite negative consequences, and
often co-occurs with other negative habits such as substance abuse and food disorders [3,
13, 14]. Adami et al. [5] proposed indicators based on wager volatility and number of games
played to identify a group of medium-risk players that were not recognized by Braverman
and Shaffer [8].

Mosquera and Keselj [6] identified game-play types based on session start and end times
using k-means clustering on EGM data (win or no win to cash out). They used ANOVA
and Tukey’s HSD to compare clusters. To refine results, Latifi [9] advised using DBSCAN
before k-means. Although the researcher uses a Multivariate Convolutional LSTM neural
network to quickly classify playstyle, it does not significantly improve performance when
more than 40 transactions are analyzed.

Deep neural network advancements have had a significant impact on the field of Reinforce-
ment Learning (RL), allowing complicated decision-making issues with high-dimensional
state and action spaces to be solved [15]. Deep Reinforcement Learning (DRL) has been
used in a variety of fields, including robotics [16, 17] and video games [18–21]. By study-
ing the relationship between dopaminergic neuron activity and reward prediction errors,
researchers in psychology and neuroscience have found evidence that the brain uses RL
algorithms [22].

Wu and Izawa [23] studied the effect of regret on motivation in problem gambling by in-
cluding it in reinforcement learning. They defined regret as the gap between the maximum
reward and the current reward. Their regret reinforcement learning algorithm demonstrated
behavior comparable to that of addicted gamblers by selecting high-risk, high-reward op-
tions. Inverse Reinforcement Learning (IRL) [24] models human behavior by extracting
reward functions from observations and optimal behavior [25–30]. However, IRL requires
well-defined environment and behavior trajectories, which can be challenging to produce in
EGM.

3. Methodology

In this section, we will discuss how we detected playstyles using the clustering technique.
Furthermore, we will use one of the playstyle clustered data in our Reinforcement Learning
(RL) model to mimic the behavior of players in that cluster. We will also discuss how we
identified termination states where the players within this cluster end their session by decid-
ing playing further is not worth it. Finally, the sessions generated by the RL are compared
with the selected cluster session data. Figure 1 illustrates the flow of tasks performed for
generating player behavior.

Figure 1. Player Behavior Generation Flowchart



4

3.1. Dataset Description

The data that we used is from a less sophisticated EGM game. This game does not
have any bonus rounds or secondary game rounds, which makes the implementation of RL
simpler. There are around 27,027 sessions in the dataset. Each session includes the player’s
transactions, containing information such as cash put into or removed from the machine,
bets played, and cash won for each bet. EGM data has a fairly limited set of information
due to which many characteristics have been extracted from the sessions’ initial features.
Some of these features are mentioned and explained in Table 1.

Attribute Explanation
Reward % of wins, where win is greater than wager, # of wins (>wager) divided by number of wagers
Losses Disguised as Wins % of wins, where win is less than wager, # of wins (<wager) divided by number of wagers
Illusion of Control Number of times the player changed wager
Bonus Round Frequency of bonus rounds
Total cash in amount The total amount of money inserted by the player in the machine during a play session
Average primary wager The average primary wager in a play session
Session length Elapsed time is the amount of time that passes from the start of a session to the end of the session.
Total cash out Total cash out in a session
Starting cash in Total amount of cash in at the start of the session before he starts playing
Loss Percentage Total number of loss divided by total number of wagers
Intensity Intensity (wagers/minute) in a session
Cash out to cash in ratio The ratio of cash out to cash in
Number of cash in Number of times a player inserted money in a machine
Payout to Wager (PW) ratio Total payout divided by total wager in a session

Table 1. Features Explanation

3.2. Feature Selection and Data Transformation

For detecting the playstyles of the player, we have used only a few features similar to
that were used by Mosquera and Keselj [6] in the clustering algorithms. Table 2 shows the
selected features for clustering and their statistics measures. It is clear from Table 2 that
the data is skewed to the right showing a non-normal sample distribution.

Features Mean Std. Dev. Min 1st Qrt. Median 3rd Qrt Max
Win % 0.21 0.04 0.04 0.18 0.21 0.23 0.48

Loss Disguised as Win 0.10 0.03 0 0.08 0.10 0.11 0.44
Illusion of Control % 0.04 0.06 0 0.01 0.03 0.05 0.64
Number of Wagers 259.72 377.32 4 67 145 301 9945

Intensity 0.25 0.09 0.001 0.22 0.25 0.29 1.68

Table 2. Features Statistics Measures

To address the skewness of the data, we used the Box-Cox transformation. The Q-Q plot
analysis was used to verify the normal distribution of the data following the transformation.
The z-score normalization technique was then used to normalize the transformed data.

3.3. Clustering

We used the K-means clustering method with random initialization to identify different
types of gambling behavior or playstyles. Clustering algorithms, in general, divide data into
k groups or clusters by analyzing cases in a data set; cases that appear similar to others
are grouped together [4]. A dissimilarity function is used to define these clusters. There
are numerous methods for clustering data, with k-means clustering being one of the most
widely used.

The number of clusters is the only major hyper-parameter that needs to be tuned for
this algorithm, which can be determined through Elbow method. This algorithm is linear
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in complexity and scales well to big data. The dataset was clustered by changing the value
of k from 5 to 20 to identify a stable and suitable solution for k. The dissimilarity of data
objects was calculated in this study based on the distance between pairs of data objects
using the Euclidean distance on the normalized dataset. To mimic one of the playstyles,
we selected a cluster from among all clusters that represent a group of players with similar
playstyles.

3.4. Identifying Termination States

We want to find the termination states, where the player decides that continuing the
session is not worth it, and train an RL model based on these states. The endpoints are the
25th, 50th, and 75th percentiles because they represent the majority of the distribution of
the clusters and show the general playing style of the players within this cluster.

This distance is calculated by averaging 100 players’ session features and then calculating
the Euclidean distance for each transaction performed by the player with the termination
value; i.e., the distance is calculated as the player progresses through the game. We chose
win percentage, loss percentage, loss disguised as a win, PW ratio, and the illusion of
control (see description in Table 1) termination values in the termination states for training
the RL model because they have a smooth decreasing curve, indicating a common playing
style among players in this cluster.

3.5. Reinforcement Learning Algorithms

In this section, we will briefly describe the Reinforcement Learning algorithms used in
this study to mimic real-world player behavior.

3.5.1. Proximal Policy Optimization

Model-free policy search techniques, such as policy gradient approaches, are helpful for
updating the policy [31], but the problem with policy gradient is finding the right step size
for updation, as they are sensitive.

To eliminate this problem, researchers came up with an approach called Trust Region
Policy Optimization (TRPO) [32], which applied a trust region restriction to the objective
function in order to reduce the KL divergence between the existing and new policies to make
sure that the new policies are not too far from the old policies. Theoretically, this can be
supported by demonstrating that improving the policy within the trust region results in a
guaranteed improvement in monotonic performance. TRPO is computationally inefficient
for large-scale tasks, and when applied to sophisticated network architectures, it is chal-
lenging to scale up for those situations [33]. By using a clipping technique to avoid totally
imposing the hard restriction, Proximal Policy Optimization (PPO) [34] greatly decreases
complexity and is able to employ a first-order optimizer, such as the Gradient Descent
method, to optimize the objective function which is defined as:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)], (3.1)

where θ is policy parameter, Êt is the expectation over time t, rt is the probability ratio of
old and new policies, Ât is the estimated advantage at time t, and ϵ is a hyperparameter. By
attempting to remove the reward for moving the policy away from the previous one when
the probability ratio between them is outside of a clipping range, this objective function
eliminates the KL constraint of TRPO while maintaining the execution of a Trust Region
update.

PPO performs better overall for a broad range of tasks and is relatively easy to implement
and tune while preserving the stability and reliability of a TRPO.



6

3.5.2. Actor Critic using Kronecker-Factored Trust Region

Actor Critic using Kronecker-Factored Trust Region (ACKTR) [35] uses actor-critic meth-
ods in which the actor performs an action while the critic estimates the value function,
distributed Kronecker factorization [36], and trust region optimization [32]. It creates a
scalable approximation of the natural gradient using the Kronecker-Factored Approximated
Curvature (K-FAC) [36, 37]. K-FAC uses a Kronecker-factored approximation to the Fisher
matrix to perform efficient approximate natural gradient updates. It approximate small
block Fl corresponding to layer l as F̂l by calculating:

Fl ≈ E[aaT ]⊗ E[∇sL(∇sL)
T ] := A⊗ S := F̂l (3.2)

By assuming that there is no correlation between the second-order statistics of the ac-
tivations and the backpropagate derivatives, this approximation can be understood. The
Fisher metric for RL objectives is defined as:

F = Ep(τ)[∇θ log π(at|st)(∇θ log π(at|st))T ], (3.3)

where p(τ) is the distribution of trajectories stated as:

p(s0)

T∏
t=0

π(at|st)p(st+1|st, at). (3.4)

The Fisher matrix is used to update both the actor and the critic by approximating it by
applying K-FAC. ACKTR then applies trust region formulation of K-FAC [38] to update the
policy distribution. With both discrete and continuous action spaces, ACKTR is adaptable
to learning the model’s action probability distribution from an observation. It returns the
probability mass for discrete action spaces whereas it returns the probability density for
continuous action spaces [39].

4. Experimental Setup

For this study, we used PPO2, which is implemented for GPU by OpenAI, and for
multiprocessing, it uses vectorized environments compared to PPO1 which uses MPI [40].
Both models, PPO2 and ACKTR, were trained for around 1 million iterations.

4.1. RL Environment

4.1.1. Action Space

The agent can mainly take two types of actions that are either it can make a wager or
cash out. The agent also has to decide the amount of money to wager. As in the real EGM
game, the agent can also only bet 2, 4, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90,
and 100 dollars. If the agent decides to cash out, it will cash out all of the money in the
machine because the majority of the players in the original cluster only cashed out once.

4.1.2. State/Observation Space

The agent looks at the observation space in order to take action. Initially, the agent gets
some random credit in the machine to start with as we have no cash in action. The agent
considers the amount waged and received in the previous transaction, the current credit
amount in the machine, the win percentage, the loss percentage, the loss disguised as a win,
the payout to the wager, and the illusion of control. The agent uses these features to predict
which actions will result in a higher reward and acts accordingly.
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4.1.3. Reward

The agent’s goal is to maximize the total reward of the game episode. If an agent
makes an invalid move (for example, wagering more than credit) for each step, it will be
penalized by 15. If the Euclidean distance between the termination state and the current
state decreases, the agent receives a reward of 1. If the agent cashes out from the machine,
he receives 15 as a reward. If the Euclidean distance between the current state and the
termination state is less than 2, it receives a reward of 5.

5. Results and Discussion

For clustering different playstyles, the optimal value of k was found to be 9 which was
then verified using silhouette analysis (Figure 2). Further, we chose cluster number 4 to
mimic the playstyle of players in that group, which contains 4483 sessions. This cluster
represents intense gamblers, with a mean of 0.26 bets per second, who are unconcerned
about losing a lot of money, as evidenced by an 82% loss.

Figure 2. Silhouette Analysis

We generated around 1000 sessions of agents playing the game by both models trained
using the termination states of the chosen cluster. These session data were then used to
compute the win percentage, loss percentage, loss disguised as a win, and PW ratio (see
description in Table 1). To evaluate the model’s performance, we compared statistical
measures like the minimum, 25th percentile, median, 75th percentile, and maximum values
of the features and the real player cluster to see if the model’s agent playstyle matched with
the real player playstyle of the selected cluster.

Figure 3 shows that both ACKTR and PPO2 generated sessions that are very similar
to those of real players. We can see that the 25th percentile, median, and 75th percentile
values of both models are nearly identical to those of the original cluster for all the selected
features. Both models did not perform well in the max value due to noise in the data.
Figure 4 depicts the distribution comparison. We can see that the distribution of sessions
generated by both models is similar to that of the original cluster. ACKTR depicted the
wager features more accurately, such as the number of unique wagers, average wager, and
the illusion of control, because the agent learned to change the wager, whereas the PPO2
agent played the entire session with only one wager value. ACKTR agent was intelligently
changing the wager value depending on the losses and the wins to gain maximum reward



8

out of the session. PPO2 was better than ACKTR in playing for a longer time, as PPO2
produced sessions with a number of wagers of around 200, while ACKTR produce sessions
with a maximum of 100 numbers of wagers.

Figure 3. Statistical Measures Comparison
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Figure 4. Features Distribution Comparison
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6. Conclusion

This study mimics player behavior to obtain a good evaluation of a reinforcement learning
model as a feasible substitute for real-world players. K-means gave an excellent separation
of the player behaviors. We selected the cluster with intense gamblers and their behavioral
attributes used to define the termination states for the RL model. The reward for the
agents was calculated based on the Euclidean distance between the current state and the
termination states. Both the models, PPO2 and ACKTR, succeeded in producing behavior
similar to that of the selected cluster behavior. Though PPO2 was able to produce sessions
with longer duration or more number of wagers, ACKTR slightly outperformed PPO2 as
the ACKTR agent was intelligently able to change wager values during the session, which
is an important attribute to say that the agent mimicked the player behavior.

6.1. Limitations

The RL algorithms employed to mimic player behavior in this study were only used for
one playstyle and game, hence they may not be generalizable to other playstyles and games.
Since the RL models have not been tested in production, they may be subject to unforeseen
limitations.

6.2. Future Work

For future work, a different clustering algorithm could be used to have a better distinction
of the behaviors of the player. We can include more features in the termination states, this
might make the agent behave more like real-player as it will have more behavioral attributes
to think about. It will be interesting to see how the agent will behave by tweaking the reward
function from using the Euclidean distance to some other distance. Currently, the model
does not have a cash in action as it starts with some random number credit in the machine,
this action could be added so that it is performed by the agent, and also the agent could be
modeled so it can perform some intermediate cash in and cash out based on the net loss of
the session. Finally, it will be interesting to change this EGM environment to simulate it as
a video game such as Atari games.
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